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ABSTRACT: We present an operationally simple iterative
coupling strategy for the synthesis of oligomeric homo- and
hetero[n]rotaxanes with precise control over the position of
each macrocycle. The exceptional yield of the AT-CuAAC
reaction, combined with optimized conditions that allow the
rapid synthesis of the target oligomers, opens the door to the
study of precision-engineered oligomeric interlocked molecules.

■ INTRODUCTION

Main-chain1 oligo- and poly[n]rotaxanes typically consist of a
linear axle component encircled by (n − 1) macrocycles2 that
are prevented from escaping by bulky end groups.3−6 The
threaded arrangement of axle and rings gives rise to products
with physical and chemical properties that are distinct from
those of either component. As a result, poly[n]rotaxanes have
been investigated for applications including drug delivery,7

electronic materials,8 stimuli-responsive materials,9 and sen-
sors,10 and the mechanical properties of so-called “slide ring
gels” 11 have led to their commercial application in scratch-
resistant surfaces.
The vast majority of poly[n]rotaxanes studied to date are

homocircuit12 structures, at least in part because many are
synthesized using solvophobic threading which, although
synthetically efficient,3 does not lend itself to the synthesis of
heterocircuit targets.13−15 Solvophobic threading can also lead
to poor control of the threading ratio, a measure of the degree
of axle encapsulation.16 Conceptually, the simplest way to
produce heterocircuit structures would be to design the axle
with specific binding sites for each macrocycle. However,
although poly[n]rotaxanes have been synthesized using such
templating interactions,17 this approach is synthetically more
challenging and has not yet been applied in the synthesis of
heterocircuit systems. Thus, although the effect on poly[n]-
rotaxane properties of both the threading ratio, which could be
considered the mechanical analogue of the degree of polymer-
ization, and macrocycle structure, the mechanical equivalent of
monomer structure, have been investigated,3 to date little
attention has been paid to the effect of the order of macrocycles
in heterocircuit poly[n]rotaxanes, the mechanical analogue of
monomer order in covalent polymers, currently a significant
focus of research.18

Taking inspiration from the synthesis of information rich
oligo-amides and oligo-nucleotides,19 one approach to gain
complete control over structure in a main-chain poly[n]-
rotaxane is the use of iterative coupling strategies to
sequentially add macrocycles to the growing axle.20 Here we
report the realization of such an iterative coupling methodology
for the synthesis of oligo[n]rotaxanes with complete control
over the order of macrocycles and excellent yield (>89%) for
each cycle of mechanical bond formation. We demonstrate the
power of our approach through the synthesis of a homo[6]-
rotaxane and a hetero[4]rotaxane in excellent isolated yields.

■ RESULTS AND DISCUSSSION

Iterative Cu-mediated alkyne−azide cycloaddition (CuAAC)
reactions21 are an effective method for the synthesis of complex
targets,22,23 including sequence-controlled oligomers,24 using a
variety of methodologies25,26 due to the efficiency of the
triazole-forming step. The active template CuAAC (AT-
CuAAC) reaction, introduced by Leigh and co-workers,27 and
modified by us to employ small macrocycles,28 is a similarly
efficient method for the synthesis of interlocked structures.29,30

However, although the AT-CuAAC reaction often results in
exceptionally high yields of interlocked molecules, reaction
times often exceed 18 h and can be as long as 72 h for complete
conversion, which is sub-optimal for iterative synthesis.

Optimization of the AT-CuAAC Reaction for Iterative
Couplings. In order to optimize the conditions to shorten the
reaction time, while maintaining the reaction yield, we first
investigated the AT-CuAAC reaction of simple bis-alkyne 1.
This also allowed us to assess whether the second AT-CuAAC
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reaction would proceed when the alkyne component was
contained in an interlocked starting material, not a foregone
conclusion by any means, and whether the presence of the
second macrocyclic ligand would interfere with the Cu-
mediated bond formation. When the reaction between bis-
alkyne 1, azide 2, and macrocycle 3 was carried out in EtOH
with NiPr2Et as a base, consumption of 3 was found to be
complete in 2 h at 100 °C under microwave (μw) irradiation
(Scheme 1).31 We initially anticipated that a mixture of

[2]rotaxane 5 and [3]rotaxane 6 would be formed, in keeping
with the outcome of the corresponding reaction in the absence
of the macrocycle 3, which produces a statistical mixture of
diyne 1 and mono- and bis-triazole products. However, 1H
NMR analysis of the product mixture after aqueous workup
revealed two major products, [2]rotaxane 5 and a second,
singly interlocked product which was tentatively identified as
interlocked Cu triazolide 4.28b Repeating the same reaction at
room temperature gave 4 as the sole interlocked product and
allowed it to be identified unambiguously by 1H NMR (Figure
2b) and mass spectrometry (m/z = 958).

The high selectivity observed in the production of 5 is
intriguing but potentially problematic, as the same steric
shielding of the acetylene moiety could lead to poor efficiency
or the need for longer reaction times in the second round of
AT-CuAAC. Indeed, initial attempts to couple 5 with azide 2
and macrocycle 3 under the same AT-CuAAC conditions with
sufficient CuI to coordinate to macrocycle 3 and [2]rotaxane 5
produced a poor yield of [3]rotaxane 6, with the balance of
material made up by the reaction of azide 2 and alkyne 5 to give
the bis-triazole axle encircled by a single macrocycle. Working
from the hypothesis that the steric hindrance of 5 might be
exacerbated by the re-coordination of CuI into the macrocycle
cavity, we repeated the AT-CuAAC reaction without additional
CuI over and above that required to coordinate with macrocycle
3. Pleasingly, under these conditions, the second mechanical
bond formed efficiently, and after reprotonation of the
corresponding triazolide byproduct by heating in CH2Cl2,
[3]rotaxane 6 was isolated in 86% yield. Thus, under our
optimized conditions over two steps, 2 equiv of azide 2 and
macrocycle 3 were combined with bis-alkyne 1 to produce a
doubly interlocked [3]rotaxane in 67% yield.

Analysis of [3]Rotaxane 6. Triazolide 4, [2]rotaxane 5,
and [3]rotaxane 6 all display characteristic shifts in their 1H
NMR spectra (Figure 2b−d) consistent with their interlocked
structure. In particular, as with all rotaxanes derived from 3,28a

protons HF and HG of the macrocycle (Figure 2a) appear at
lower ppm than the non-interlocked macrocycle, and the
triazole C−H signals in 5 and 6 resonate at higher ppm (Δδ =
2.33 and 2.22 ppm, respectively) than the non-interlocked axle,
consistent with the presence of a C−H···N hydrogen bond, as
observed in the solid-state structure of 5.
Formation of the second mechanical bond to produce 6

increases the symmetry of the molecule, resulting in fewer

Scheme 1. Iterative Synthesis of [3]Rotaxane 6a

aReagents and conditions: (i) 1 equiv each of 1, 2, 3, and
[Cu(MeCN)4]PF6, EtOH, 100 °C (μw), 2 h; (ii) CH2Cl2, 100 °C
(μw), 1 h.

Figure 1. Solid-state structure of [2]rotaxane 5 in (a) ellipsoid and (b)
space-filling representations. Interaction lengths (Å) and angles (deg):
H44···N1 2.524, H44···N2 2.520, C44−H44···N1 138.5, C44−H44···
N2 154.8.

Figure 2. Partial 1H NMR (400 MHz, CDCl3, 298 K) with selected
signals assigned of (a) macrocycle 3, (b) crude reaction mixture
containing triazolide 4 as the major product (>95%), (c) [2]rotaxane
5, (d) [3]rotaxane 6, and (e) corresponding non-interlocked axle of
[3]rotaxane 6. For macrocycle and axle labeling, see Scheme 1 (axle
labeling as in 6).
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signals for the axle component compared with 5. More
unexpectedly, proton Hf of the axle resonates 0.46 ppm higher
in [3]rotaxane 6 than in the non-interlocked axle (Figure 2e),
and protons He resonate 0.56 ppm lower. This is surprising,
considering the absence of similar effects or obvious non-
covalent interactions between the macrocycle and equivalent
protons in the solid-state structure of [2]rotaxane 5 (Figure 1).
Computational modeling32 of the non-interlocked axle
suggested that the shielding of He and the deshielding of Hf
may both be the result of conformational changes enforced by
the sterically crowded mechanical bond; the predicted chemical
shifts of protons He and Hf vary considerably, depending on the
relative orientation of the central benzene ring and the triazole
moieties.
Previous reports23e,h and molecular modeling32 suggest that

the non-interlocked axle adopts a range of conformations about
the central benzene ring in which the syn-syn conformer is
disfavored.33 Conversely, the observed shielding of He and
deshielding of Hf in [3]rotaxane 6 compared with the non-
interlocked axle is consistent with the syn-syn rotamer being
favored in the case of the [3]rotaxane. In keeping with this
proposal, NOESY NMR analysis of 6 reveals strong cross-peaks
between Hd and He but only a weak correlation between Hd
and Hf (see Supporting Information). Models of 6 (Figure 3)

indicate that steric interactions between the macrocycles are
minimized in this conformation.32 Thus, based on NMR
analysis and molecular modeling, it appears that the sterically
crowded nature of the mechanical bond stabilizes the syn-syn
rotamer of [3]rotaxane 6, leading to an unusual extended
conformation in solution.
Iterative AT-CuAAC Synthesis of a Homo[6]rotaxane.

In order to apply the conditions developed above to the
iterative synthesis of oligomeric [n]rotaxanes, we synthesized
building block 8 that incorporates an azide and a protected
acetylene moiety.25b,d When alkyne 7 and azide 8 were

subjected to our optimized AT-CuAAC conditions, macrocycle
3 was quantitatively converted into a mixture of [2]rotaxane 9
and the corresponding CuI triazolide (Scheme 2). Heating the
crude AT-CuAAC product in CH2Cl2 led to protonolysis of the
Cu−C bond. Subsequent TBAF-mediated proto-desilylation of
the acetylene moiety produced [2]rotaxane 9, which was
isolated in 94% yield over three steps in one pot, requiring a
total of 4 h reaction time. Repeating this sequence iteratively
gave, in order, [3]rotaxane 10 (94%), [4]rotaxane 11 (91%),
[5]rotaxane 12 (90%), and finally [6]rotaxane 13 (92%)
without any significant loss of reaction efficiency. The yield of
the final product was 67% over 15 steps with five rounds of
purification to form five new mechanical bonds.

1H NMR analysis confirmed the homogeneity of the isolated
oligomeric products (Figure 4). As in rotaxanes 5 and 6,
triazole proton Hd of [2]rotaxane 9 resonates at >10 ppm
(Figure 4a), suggesting that hydrogen-bonding interactions
with the bipyridine of the macrocycle, as observed in the solid-
state structure of 5 (Figure 1), are also present in 9. Similarly,
protons HF and HG of the flanking aromatic moieties are shifted
to lower ppm in the interlocked structure. Introduction of the
second macrocycle to give [3]rotaxane 10 (Figure 4b) leads to
the appearance of a second distinct triazole signal at high ppm
and another set of flanking aromatic protons between 6.6 and
6.9 ppm. Formation of the second mechanical bond leads to a
triplet at 8.7 ppm, which is assigned as proton Hg of the axle.
Subsequent iterations lead to distinct signals for the triazole,
flanking aromatic rings of the macrocycle and the ortho proton
of the linking benzene ring up until [6]rotaxane 13 (Figure 4e),
where some signals become isochronous, indicating a transition
from discrete proton environments to more oligomeric-type
behavior.
The high chemical shifts of protons Hg, Hl, Hq, and Hv

suggest that, as in [3]rotaxane 6, [6]rotaxane 13 adopts a
preferred conformation where the triazole rings are oriented
with their N-atoms syn-periplanar to the central ortho proton of
the linking aromatic units. ROESY NMR analysis of 13 is
consistent with this proposal; weak correlations were observed
between the central aromatic CH and the neighboring triazole
protons, and strong correlations with the other C−H residues
of the linking aromatic rings. Inspection of molecular models32

once again suggests that this arrangement minimizes steric
interactions between adjacent macrocycles. This leads to an
extended conformation of the axle component and an end-to-
end distance of ∼3.8 nm. In contrast, previously reported meta-
linked phenyl-triazole oligomers are reported to adopt either
helical conformations to maximize H-bonding and π−π
stacking,23f,h or alternating syn-anti conformations23e,h to
minimize dipole−dipole interactions between adjacent polar-
ized triazole moieties.

Iterative Synthesis of a Hetero[4]rotaxane. Having
demonstrated the iterative AT-CuAAC synthesis of homo[n]-
rotaxanes, we turned our attention to the synthesis of a
heterocircuit analogue with precise control over the order of
the different macrocycles. Reaction of macrocycle 14 with
alkyne 7 and azide 8 (Scheme 3) resulted in quantitative
conversion to the corresponding triazolide. In this case, heating
the crude reaction product in CH2Cl2 did not lead to
protonation of the Cu−C bond, presumably due to the more
hindered environment provided by macrocycle 14. As macro-
cycle 14 is stable to acidic conditions, TFA was employed to
effect the required proto-demetalation. Subsequent proto-

Figure 3. Computer model (PM6) of the proposed preferred syn-syn
rotamer of [3]rotaxane 6 in (a) sticks and (b) space-filling
representations.
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desilylation of the crude product with TBAF gave target
[2]rotaxane 15 in 90% isolated yield over three chemical steps.
The lack of rotational symmetry in macrocycle 14 results in a

more complicated 1H NMR spectrum for [2]rotaxane 15
(Figure 5b) than those of [2]rotaxanes 5 and 9, although the
broad features (low-field triazole proton Hd, shielded flanking
aromatic protons HG, HH, HP, and HQ) remain the same. Also,
it is noteworthy that, as macrocycle 14 is rotationally
unsymmetrical and the thread is translationally unsymmetrical,
[2]rotaxane 15 is mechanically planar chiral,28c albeit formed as
a racemic mixture. Indeed, single-crystal X-ray analysis (Figure
6) revealed that the unit cell contains both enantiomers of 15,
related by a center of inversion.
As the axle of [2]rotaxane 15 lacks prochiral units, which

would be rendered diastereotopic in the interlocked structure,
the chirality of 15 is not apparent in the 1H NMR spectrum.
However, it makes itself known when the second macrocycle is

introduced. Using the same reaction sequence, [2]rotaxane 15
was converted into [3]rotaxane 17 by reaction with macrocycle
16 and azide 8 in excellent 92% yield. Despite being bilaterally
symmetric, in [3]rotaxane 17 the mirror symmetry of
macrocycle 16 is broken by the element of mechanical
stereochemistry, and thus protons which are equivalent in the
non-interlocked precursor are now diastereotopic and, in
principle, may appear as non-equivalent in the 1H NMR.
This is most clearly demonstrated in the case of protons HG′
and HH′ of the flanking aromatic units, which appear as two sets
of two coupled doublets, and protons HC′, which appear as two
overlapping doublets.
Similar effects are observed in [4]rotaxane 18, which was

produced in an excellent 89% yield by reaction of [3]rotaxane
17 with macrocycle 3 and azide 8. 1H NMR analysis of
[4]rotaxane 18 (Figure 5d) revealed that not only are many of
the resonances of macrocycle 16 non-equivalent, even signals
arising from macrocycle 3 show evidence of desymmetrization
by the element of mechanical chirality, with protons HF′′ and
HG′′ appearing as complex multiplets. Although chiral
information transfer over long distances in covalently bonded
systems, typically through conformational biasing,35 has

Scheme 2. Iterative AT-CuAAC Synthesis of Oligo[n]rotaxanesa

aReagents and conditions: (i) 1 equiv each of 1, 2, 3, and [Cu(MeCN)4]PF6, EtOH, 100 °C (μw), 2 h; (ii) CH2Cl2, 100 °C (μw), 1 h; (iii) TBAF,
THF, rt, 1 h.

Figure 4. Partial 1H NMR (500 MHz, CDCl3, 298 K), with selected
signals assigned,34 of (a) [2]rotaxane 9, (b) [3]rotaxane 10, (c)
[4]rotaxane 11, (d) [5]rotaxane 12, and (e) [6]rotaxane 13. For
macrocycle and axle labeling, see Schemes 1 and 2, respectively.

Scheme 3. Synthesis of Hetero[4]rotaxane 18a

aReagents and conditions: (i) 1 equiv each of 1, 2, 3, and
[Cu(MeCN)4]PF6, EtOH, 100 °C (μw), 2 h; (ii) TFA, CH2Cl2, rt,
1 h; (iii) TBAF, THF, rt, 1 h; (iv) CH2Cl2, 100 °C (μw), 1 h.
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previously been observed, the transfer of the mechanical
stereochemical information centered on macrocycle 14 through
the mechanical bond to macrocycle 16 is extremely unusual; in
the case of [4]rotaxane 18, molecular models32 suggest a
distance of 1.3 nm between the element of mechanical chirality
and macrocycle 3, assuming the axle adopts a syn-syn
orientation, consistent with ROESY NMR analysis and the
low-field shift of protons Hg and Hl.

■ CONCLUSIONS
In summary, we have successfully demonstrated an iterative
AT-CuAAC approach for the high-yielding (∼90% per
mechanical bond) synthesis of both homo- and hetero[n]-
rotaxanes. With regard to the latter, our iterative coupling
approach allowed us to install three different macrocycles on
the axle, with their order determined simply by the order in
which the coupling reactions were carried out. Based on NMR
analysis, supported by molecular modeling, the sterically
crowded nature of the mechanical bond in the [n]rotaxane

structures favors an unusual all-syn geometry of the axle
component to minimize steric repulsion between the macro-
cycles, resulting in an extended conformation. With high-
yielding and operationally convenient conditions in hand, it is
now possible to synthesize oligo[n]rotaxanes rapidly with
control over the structure of the axle (by varying the azide-
acetylene monomer) and macrocycle. Furthermore, by electing
to omit the macrocycle in some coupling steps, the threading
ratio of the oligomeric product can be controlled precisely.
Future work will focus on transferring the reaction to the solid
phase to allow the automated synthesis of longer oligomers
with precise control of their structure without the need for
costly and time-consuming purification steps,36 allowing
designer oligo- and poly[n]rotaxanes to be investigated for a
variety of applications.37 Work toward this goal is currently
taking place in our laboratory.
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